Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Lab Session \#12
(Random Parameters Count-Data Models)

You are given accident, evirnomental, traffic, and roadway geometric data from 275 segments of highway in Washington State. The data are from 1990. Your task is to estimate a count-data model for the total number of accidents on these segments. See Example 16.2 in the text.

The random parameter Poisson and negative binomial models are derived by making the estimable parameters,

$$
\beta_{n}=\beta+\omega_{n}
$$

where ω_{n} is a randomly distributed term (for example a normally distributed term with mean zero and variance σ^{2}). With this equation, the Poisson parameter becomes $\lambda_{n} \mid \boldsymbol{\omega}_{n}=\operatorname{EXP}\left(\boldsymbol{\beta}_{n} \mathbf{X}_{n}\right)$ in the Poisson model and $\lambda_{n} \mid \boldsymbol{\omega}_{n}=\operatorname{EXP}\left(\boldsymbol{\beta}_{n} \mathbf{X}_{n}+\varepsilon_{n}\right)$ in the negative binomial with the corresponding probabilities for Poisson or negative binomial now $P\left(y_{i} \mid \boldsymbol{\omega}_{i}\right)$. With this, the log-likelihood can be written as,

$$
L L=\sum_{\forall n} \ln \int_{\boldsymbol{\omega}_{n}} g\left(\boldsymbol{\omega}_{n}\right) P\left(y_{n} \mid \boldsymbol{\omega}_{n}\right) d \boldsymbol{\omega}_{n}
$$

where $g($.$) is the probability density function of the \boldsymbol{\omega}_{i}$. As was the case with the mixed logit model described previously, because probability estimations are computationally cumbersome, a simulationbased maximum likelihood method is again used (with Halton draws again being an efficient alternative to random draws).

In your specification, consider random variable possibilities including constant or fixed (C), normally distributed (N) and log-normally distributed (L).

1. The results of your best model specification.
2. A discussion of the logical process that led you to the selection of your final specification (the theory behind the inclusion of your selected variables). Include t-statistics and justify the signs of your variables.

Variables available for your specification are (in file Ex16-2.txt):

Variable Number	Explanation
ID	Segment ID number
FREQ	Number of accidents
ROUTE	Route Number
LENGTH	Segment length in miles
INCLANES	Number of lanes in increasing milepost direction
DECLANES	Number of lanes in decreasing milepost direction
WIDTH	Total combined width of all lanes
MIMEDSH	Minimum median shoulder in feet
MXMEDSH	Maximum median shoulder in feet
SPEED	Speed limit (mi/h)
URB	Indicates urban area ($1=$ yes, $0=$ no $)$
FC	Functional class ($1=$ local, $2=$ collector, $3=$ arterial, $4=$ principal arterial, 5=interstate)
AADT	Average Annual Daily Traffic
SINGLE	Daily percentage of single unit trucks
DOUBLE	Daily percentage of tractor and trailer trucks
TRAIN	Daily percentage of tractor and two-trailer trucks
PEAKHR	Percent of daily traffic in the peak hour
GRADEBR	Number of grade breaks in the segment
MIGRADE	Minimum grade in the segment
MXGRADE	Maximum grade in the segment
MXGRDIFF	Maximum grade difference in the segment
TANGENT	Tangent length in the segment
CURVES	Number of cureves in the segment

MINRAD	Minimum radius in feet
ACCESS	Segment access control ($0=$ none, $1=$ partial, $3=$ full $)$
MEDWIDTH	Median width ($1=$ less than $30 \mathrm{ft} ; 2=30$ to $40 \mathrm{ft} ; 3=40$ to $50 \mathrm{ft} ; 4=50$ to 60 ft to $5=$ high $)$
FRICTION	Friction value (0 to 100 with 100 being high $)$
ADTLANE	Average daily travel per lane
SLOPE	Segment slope ($0=$ flat, $1=$ slight, $2=$ medium, $3=$ high $)$
INTECHAG	Indicates number of interganges in the segment
AVEPRE	Average precipitation per month in inches
AVESNOW	Average snowfall per month in inches

```
--> read;nvar=32;nobs=275;names=ID,FREQ,ROUTE,LENGTH,INCLANES,DECLANES,WIDTH,
    MIMEDSH, MXMEDSH, SPEED, URB, FC, AADT, SINGLE,DOUBLE,TRAIN, PEAKHR,GRADEBR,
    MIGRADE, MXGRADE , MXGRDIFF,TANGENT , CURVES, MINRAD, ACCESS , MEDWIDTH,
    FRICTION,ADTLANE,SLOPE,INTECHAG,AVEPRE,AVESNOW
    ;FILE=D:/old_drive_d/book/book2e-Data/Ex16-2.txt$
--> create; expose=aadt*length*365/100000000$
--> negbin;lhs=freq;rhs=one, expose
    ;rpm;pts=200;halton
    ;fcn=expose(n);marginal effects$
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Poisson Regression Start Values for FREQ} \\
\hline \multicolumn{2}{|l|}{Maximum Likelihood Estim} \\
\hline Model estimated: Oct 23 & at 02:15:11PM. \\
\hline Dependent variable & FREQ \\
\hline Weighting variable & None \\
\hline Number of observations & 275 \\
\hline Iterations completed & 10 \\
\hline Log likelihood function & -13794.16 \\
\hline Number of parameters & 2 \\
\hline Info. Criterion: AIC = & 100.33573 \\
\hline Finite Sample: AIC = & 100.33589 \\
\hline Info. Criterion: BIC = & 100.36204 \\
\hline Info. Criterion:HQIC & 100.34629 \\
\hline
\end{tabular}
+--------+-------------+----------------+------------------------------------
|Variable| Coefficient | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X|
```

Normal exit from iterations. Exit status=0.

Random Coefficients NegBnReg Model	
Maximum Likelihood Estimates	
Model estimated: Oct 23, 2013	at 02:15:19PM.
Dependent variable	FREQ
Weighting variable	None
Number of observations	275
Iterations completed	12
Log likelihood function	-986.9452
Number of parameters	4
Info. Criterion: AIC =	7.20687
Finite Sample: AIC	7.20741
Info. Criterion: BIC	7.25948
Info. Criterion:HQIC =	7.22799
Restricted log likelihood	-13794.16
McFadden Pseudo R-squared	. 9284520
Chi squared	25614.44
Degrees of freedom	1
Prob[ChiSqd > value] =	. 0000000
Sample is 1 pds and 275	individuals.
Negative binomial regression	model
Simulation based on 200 Halton	n draws

