Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Lab Session \#10
(Mixed Logit Analysis I: Based on Example 13.1)

Recall from Lab Session \#7, you were given 151 observations of a travel survey collected in State College Pennsylvania (See Example 13.1 on page 319 of the text for an estimation of a fixed-parameters logit model of these data). All of the households in the sample are making the morning commute to work. They are all departing from the same origin (a large residential complex in the suburbs) and going to work in the Central Business District. They have the choice of three alternate routes; 1) a four-lane arterial (speed limit $=35 \mathrm{mph}, 2$ lanes each direction), 2) a two-lane rural road (speed limit $=35 \mathrm{mph}, 1$ lane each direction) and 3) a limited access four-lane freeway (speed limit $=55 \mathrm{mph}, 2$ lanes each direction).

As with Lab Session \#8, develop a new model with a price variable in all three choice alternatives. The price variable is created as: set price $=(($ distance $/ 10) / \mathrm{mpg}) * 1.05$.

With this, your task is to experiment with a random parameters logit model using these data. Your write-up should include:

1. The results of your best model specification.
2. A discussion of the findings in searching for a random parameters specification.

Again, for reference, see Example 13.1 on page 319 of the text.

Available distributions:

$\mathrm{n}=$ normal
l = lognormal
u = uniform
$\mathrm{t}=$ triangular
d = dome
e = Erlang
$\mathrm{w}=$ Weibull
p = exponential
$\mathrm{c}=$ nonstochastic (constant)

Variables available for your specification are (in file LOGIT-A1.txt):

Variable Number	Explanation
x1	Route chosen, rows: 1 - arterial, 2 - rural road, 3 - freeway
x2	Arterial row indicator; 1 for arterial row, 0 for others
x3	Rural row indicator, 1 for rural row, 0 for others
x4	Freeway row indicator; 1 for freeway row, 0 for others
x5	Traffic flow rate
x6	Number of traffic signals
x7	Distance in tenths of miles
x8	Seat belts: 1 - if wear, 0 - if not
x9	Number of passengers in car
x 10	Driver age in years: 1-18 to $23,2-24$ to $29,3-30$ to $39,4-40$ to 49,5 - 50 and above
x11	Gender: 1 - male, 0 - female
x12	Marital status: 1 - single, 0 - married
x13	Number of children
x14	Annual income: 1 - less than 20000, 2 - 20000 to 29999, 3 - 30000 to 39999, 4-40000 to 49999, 5 - more than 50000
x15	Model year of car (e.g. $86=1986$)
x16	Origin of car: 1 - domestic, 0 - foreign
x17	Fuel efficiency in miles per gallon

```
--> read;nvar=17;nobs=453;file=D:\old_drive_d\new_laptop\CE697N-disk\LOGIT-A1...
--> create;cage=86-x15$
--> create;price=(x7/10)/x17*1.05$
--> create;if(x10>3)old=1$
--> rplogit;lhs=xl;choices=arterial,rural,freeway;model:
    u(arterial) =pricea*price/
    u(rural)=rural*one+pricer*price+cager*cage+olda*old/
    u(freeway)=freeway*one+pricef*price+cagef*cage
    ;fcn=olda(n),pricea(n);pts=200;halton$
```

Discrete choice and multinomial logit models\|	
rmal exit from iterations. Exit status=0.	
Start values obtained using MNL modelMaximum Likelihood Estimates	
Model estimated: Oct 09, 20	3 at 01:12:25PM.
Dependent variable	Choice
Weighting variable	None
Number of observations	151
Iterations completed	19
Log likelihood function	-93.36348
Number of parameters	8
Info. Criterion: AIC =	1.34256
Finite Sample: AIC =	1.34928
Info. Criterion: BIC =	1.50242
Info. Criterion: HQIC =	1.40750
R2=1-LogL/LogL* Log-L fncn	R-sqrd RsqAdj
Constants only -124.2267	. 24844.22270
Chi-squared[6] =	61.72638
Prob [chi squared > value	$=.00000$
Response data are given as	nd. choice.
Number of obs.= 151, skip	0 bad obs.

	No coefficients=> $P(i, j)=1 / J(i)$. Constants only $=>P(i, j)$ uses ASCs only. N(j)/N if fixed choice set. $N(j)=$ total sample frequency for j $\mathrm{N} \quad=$ total sample frequency. These 2 models are simple MNL models. R-sqrd = 1 - LogL(model)/logL (other) RsqAdj=1-[nJ/(nJ-nparm)] *(1-R-sqrd) nJ = sum over i, choice set sizes

+---

\|Variable	Coefficient	Stan		$\|z\|>z$
OLDA	. 04448785	. 58295617	076	. 9392
PRICEA	-27.6571556	5.99385421	-4.614	. 0000
RURAL	1.89729274	. 96471957	1.967	. 0492
PRICER	-35.9286692	5.94298185	-6.046	. 0000
CAGER	. 20412871	. 07980156	2.558	. 0105
FREEWAY	-2.48430113	1.39064056	-1.786	. 0740
PRICEF	-21.1150878	5.83757645	-3.617	. 0003
CAGEF	24877766	09774359	2.545	. 0109

